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Abstract. In this paper we introduce a new recursive method which allows us to solve 
exactly one-dimensional king problems with higher-order interactions. The new method 
presents some important features, for example its exactness and the computational ease of 
its solution. We present a new method for evaluating the partition function. Moreover an 
application of this to the general approach is given and an analytic solution is found. 

1. Introduction 

As it is well known, the Ising model with nearest-neighbour interactions has attracted 
the attention of many investigations. In particular, in one dimension there are several 
methods for solving it, for example the matrix method and the generating function 
method. However, when more than the nearest-neighbour interactions are assumed or 
introduced in the physical problem, such methods turn out to be very complicated from 
the analytical point of view, since their solutions require approximations. 

In this paper, we develop a new recursive method which allows us to obtain the exact 
analytical solution when higher-neighbour interactions are taken into account. Indeed, 
here we present as far as the third-neighbour interaction, but we indicate the method for 
possible higher interactions. 

In 0 4  we present a new method for evaluating the partition function in the 
thermodynamic limit. Finally, in § 5 an application of this method to the computation 
of the recursive matrices developed in 0 3 is worked out. In this way an analytical 
solution of the partition function is found. 

2. Recursive method for nearest-neighbour interaction 

In this section we will introduce the recursive method for the usual Ising model with 
only nearest-neighbour interactions, extending it later. 

As it is well known (Thompson 1972), let us consider the usual Ising model in one 
dimension. In a configuration {p} the interaction energy is defined by 

i = l  i = l  

where p i  takes the value +1 or -1. p i  denotes the spin value in the ith site, J is the 
coupling constant and H is the external magnetic field. 

0305-4470/80/072465 + 13$01.50 @ 1980 The Institute of Physics 2465 



2466 E Marchi and J Vila 

Thus, the partition function is expressed as 

where p = l/kT. This last expression can be written in the form (see Thompson 1972) 

where .f = PJ, H = PH, w j  = tanh f w e  = tanh r?, and K = (cosh .f)"-'(cosh R)". 
The above expression for the partition function can be written again as 

where the second sum is the sum over the states configurations g1 = *l. The first sum is 
taken over all the configurations {p2}  = {pz, p3,  . . . , p,,}. Performing the second sum in 
the above expression, we obtain with a1 = 1 and P1 = w p g  

fl-1 n 
Z = 2 K  C C ( a l + ~ l ~ Z )  II (1+wJpipi+1) II (1+wR@i) 

1K31 b z l  i = 2  i = 2  

=2K z: [ C ( a l + P 1 ~ 2 ) ( l + W J ~ 2 ~ 9 ) ( l + W ~ ~ 2 ) ]  
iF31 

n-1 n 

i = 3  i = 3  
x !J (1 + ~ ~ ~ i p i + l )  C (1 + w e p i )  

where 
a2 = a1 +plo.q and p 2  = p1wy + a l w p &  

Repeating this procedure it is easy to see that for g3, g4, as far as @,,-I, we can obtain 
the recursion equations 

a1+1= f f l  +Piu& Pi+ 1 = P,wr + a l W m ) R  

since the mechanism is recursive. In addition we have for j s n - 1 
n-1 n 

Z=2'K ( a ] + P , ~ l + i )  II ( ~ + W . W F ~ + I )  II (1 + w ~ ~ z ) .  
h i + 1 }  1=1+1 1=1+1 

As a particular case for j = n - 1, we obtain 

z = ~ " - ' K  ( a n - l + P n -  1 ~ n ) ( l + w ~ ~ n )  
{&"I 

=2"K(an-1 + p n - 1 ~ ~ )  =2"Kan. 

Going back to the coefficients a and P, the formula (1) can be expressed in matrix 
form as 
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This recursive coupled system can be uncoupled easily and solved accordingly. 
Indeed, consider the matrix C such that 

where A1 and A Z  are the eigenvalues of A and take the form 
2 112 . A 1 , 2  = $(I + w j ) f $ [ ( w j  - 1)2 + 4 w p w ]  

The discriminant A = (wy - 1)2 + 4 w p h  is always positive under the condition /OB 1 < 1. 
This is always satisfied. Thus both eigenvalues are real and different. 

A suitable C is 

whose columns are the corresponding eigenvectors. Therefore the system 

Alui = ui+l, A 2 ~ i  = V i + l ,  

whose solutions are given by 

ui+l= ( ~ l ) ' u l  and ui+ l=  ( A 2 ) i ~ 1 ,  

is related to the previous system of A by (;j = c( 1;) Or 

where 

Solving the latter equations for u1 and v l  and replacing them in the above equations, 
one can obtain the desired solution for ai a i d  pi. With these values the partition 
function is completely determined. 

3. Recursive method with two-neighbour interactions 

Having shown the method for the nearest-neighbour interaction, in this section we shall 
explain how the recursive method can also be applied to two-neighbour interactions. 

In this case the partition function takes the form 
n n-1 n -2 

z = K  II (1 +wBpi)  II (1 + ~ y ~ g i ~ i + l )  II (1 + ~ ~ 2 c ~ i c ~ i + 2 )  
{&} i = l  i = l  i = l  

where K = (cosh R)"(cosh f l ) n - 1 ( ~ ~ ~ h ~ 2 ) n - z ,  fl = Jl /kT,  f 2  = J2/kT and I? = H/kT. 
Again H is the magnetic field applied to the system and J1 and JZ are the first: and 
second-neighbour coupling constants respectively. 
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Taking the partition function as before, we have 

where 

We denote by Z3 the last term with the products in the last expression. Iterating the 
previous procedure we can easily obtain 

Z = 2'K 1 (ai +Pipi+l+ yi@i+~ + 8 i ~ i + l ~ i + ~ ) Z i + l  
b ' + 1 }  

with i + 1 s n - 2, where the coefficients are recursively given by the matrix relation 
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To obtain the partition function effectively we take i = n - 2, and therefore we 
perform the following operations: 

In this way we have obtained in a recursive way the final expression. 
In order to compute effectively the coefficients in the last expression of the partition 

function it is necessary to solve the recurrence system given above. 
However, if it is not necessary to have an explicit and analytical expression of the 

entries of the recurrent system, then the aim of having the partition function, at this 
point, becomes very simple. We only need to have a suitable numerical iteration which 
can be performed accordingly. We remark that when an analytical solution is necessary 
this might be done by uncoupling the recurrence system, similarly as was performed in 
the previous paragraph. But here the difficulties will increase enormously since it turns 
out that the roots of an equation of degree four must be calculated. This is a great 
computational task, which we will not study due to its difficulties. However, we will 
present a recursive procedure which allows us to obtain an analytical exact solution. 

Let us denote by I the set of entries (1,2), (1 ,3 ) ,  (2, l), (2,4), (3, l), (3,4), (4,2) and 
(4,3); then the matrix A given above for the recursive expression of ai, Pi, yi, Si, has w g  
as a factor for ( k ,  I )  E I and no factor w g  for ( k ,  I )  & I. Thus, it is possible to see that the 
even power A2' has entries 

for ( k ,  l ) &  I and ( k ,  I)  E I, respectively. 
Similarly, for the odd power A2'+', this matrix has entries 

for (k ,  2)  & I and ( k ,  I)  E I respectively. 
At this point, we point out that the importance of having the power matrices 

explicitly as polynomials in w g  is due to the fact that in applied problems related to 
properties of thermodynamic systems there appears the necessity of studying the 
variation of certain entries with respect to I?. 

The coefficients of the polynomials expressing the entries of the power matrices can 
be computed recursively as follows, with A = ( a i ) :  
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for ( k ,  I )  E' I and p 3 1 .  For the remaining entries we have 

for any (k ,  1) E I and p 2 1 .  
Furthermore, for even powers the entries are computed as 

for (k, 1 )  ,& I and finally 

for ( k ,  I )  E I. 

4, Recursive method with three-neighbour interactions 

In this section we will extend the model to when a third interaction is included in the 
physical model. In this case, we have that the partition function is reduced to the form 

n n-1 n -2  n - 3  

{fi} i = l  i = l  i = l  i = l  
Z = K 1 II ( 1  + WRki)  II (1 + wfipipi+l) II ( 1  + W f 2 p i p i + 2 )  II ( 1  + ~ . ~ 3 ~ i ~ l . i + 3 )  

where j3  is the third-neighbour coupling constant and in K there appears a further term 
(cosh J3)'IT3. .. 

Similarly, as in the previous cases, we apply the general idea of recursion taking in 
the first step all the terms with pl: 
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Continuing with the recursive method, one can obtain inductively the following 
expressions : 

2 = 2'K (3) (4) (Oio) + t9i1)pi+l + B$2'pi+z+ Bi pic3 + 8i / ~ i + l / ~ i + 2  
bi+? 

(6) (7) + eis)pi+lpi+3 + 8i pi+2pi+3 + ei c ~ i + ~ ~ i + Z ~ i + 3 ) ~ + 1 { ~  it'} 

In order to obtain the complete partition function we have to compute the 'queue' of 
the recursive expression which contributes the end effect. 
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The first equality is obtained by summing over p n-2,  the next over p n-l and finally 
over pn. 

From here, as in the previous case, if one only desires numerical evaluation for the 
partition function, the 8's can be obtained directly by numerical iteration of the 
recurrence matrix to the power n - 2 and performing the necessary operation as shown 
in the last expression of 2. 

In the case when an analytical expression for the entries of the recurrent matrix is 
required, say in terms of wfi, a similar analysis as in the previous case of two-neighbour 
interactions might easily be performed. Indeed, the structure is kept the same with the 
only variation being in the polynomial formation. Here also appears a block dis- 
tribution as in the previous case. 

The recurrence relations for the polynomial coefficients have an analogous form as 
before. 

5. A new general method 

The method presented here represents an alternative way for evaluating the partition 
function in a very general case. As is well known, when the size of the matrix is greater 
than 2 x 2 ,  obtaining the maximum eigenvalue is not always possible. Our method has 
the advantage of finding any one of the entries of a matrix (which in the thermodynamic 
limit is equivalent to the fact of knowing the maximum eigenvalue) as related to a 
submatrix of inferior size. 

Now we will introduce our method. Consider a matrix a k l ,  k ,  1 : 1 , .  . . , N and let 
a k l ( j )  be the (k ,  1)th entry in the matrix A'. Therefore, by definition of the matrix 
product, we have 

N N 

P l ' l  Pl"1 
P i # k  

a k l ( j ) =  c a k p l a p , l ( i - 1 > = a k k a k l ( j - 1 ) +  a k p l a p l l ( j - 1 )  

and in general for some other p1 we have 

P2'1 P2'1 
# k  

Now replacing the value up l l ( j  - 1 )  given by the latter equation in the previous one, 
we obtain 
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and by recursion this gives in general 

where the matrix A is obtained from A by deleting the row k and the column k .  The 
vector a k  is the kth row of A with the element k deleted. Similarly a, is the m th column 
of A without the entry k, for m = k, 1. The products are matrix products and scalar 
products. 

The latter expression relates the elements of the power matrix a k [ ( j )  with the 
elements of the power matrices A”. At this point it is important to mention that the 
powers of A are all less than j and its size is one less than A. 

The recursion in the expression (1) is of the type 
k k k 

n k = a k - i n k - l + a k - z n k - 2 + .  . I + U o n o + b k  

where the unknowns are the n’s and the a’s are all known coefficients. This general 
problem was solved recently (Marchi and Millan 1977), and the solution may be written 
analytically as 

where the sets are given by 

I E,k = [ (11, . . . , 1,) : li = k, li > 0 and integers 
i = l  

and the coefficients by 

6. An application 

In 9 3 we have obtained the partition function as a function of the recursive coefficients 
8. These coefficients are obtained from the iteration of a matrix, recursively. 

We will now study a particular case of that matrix when OH = oJ2 = 0. This case is 
represented schematically by 

i i t 1  I +2 i +3 

where the contribution to the partition function is given by interaction of the sites i, 
i + l ;  i, i + 3  etc. 

We will solve this particular case in an exact and analytical way using the method 
presented in the previous section. 

It follows from the fact that OH = wJZ = 0 that the general matrix (written as in 0 3) 
reduces to the study of the maximum eigenvalue of the following matrix: 
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But we will now prove that the maximum eigenvalue in the thermodynamic limit is 

Consider the partition function to be given by the expression 
equivalent to the fact of knowing any of the entries of the matrix. 

then by taking the natural logarithm, 

with 
k 

r = l  
U k i ( N )  = c;hY 

where A, are the eigenvalues of the matrix A and the c’s are coefficients. Arranging the 
eigenvalues in the manner A l  > A 2 3  . . . 3 A k  it is easy to see that 

1 1 
lim - In Z = lim -- In akl(N) = lim In A,,, 

N-m N N-03 N N+CQ 

because 

( A ~ / A , , ~ ) ~  -* o or 1 if A,,, > A i  or Amax =Ai.  

We now go back to the problem of solving any entry of the matrix given above with 
the method developed in the previous section. 

The expression in (1) can be rewritten as 

j - 1  

i s 1  
a d i >  = C c h . d i )  + ~ k l ( j )  

where the coefficients c are now given by 

for 1 3  2, -1-2 k C i - / = a k A  U 

ci-1 = a k k .  

As we have proved, it is the same to compute any entry in the thermodynamic limit, 
therefore we will study the entry (1,l) of the matrix A.  Thus 

j - 1  

i = l  
a l l ( i )  = C c i a l l ( i ) + P l l ( i )  

where now 

122, 

and 
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which gives for any step 

where dI2 is the entry in the position (1,2) of the matrix A. 
We remark that in this case the general formula (2) becomes 

We recall that 

E!-' = ( (11, . , , , l,) : 

Next, our purpose is to compute explicitly the coefficients 
i ' i-l j - ( I  +12+. . .+ lr - l )  

~ ( l l , . . , , l , ) ~  = cj-Ilcj-/t-lZ * c,- i1 

Weshowthatif r = l , t h e n l l = j - 1  and 
u{i-l),-l =c' - 2 

1 - w 510 I1 a 1 2 ( i - 3 * 

For r = 2, we have It + l2  = j - 1 and only two cases arise with 1 = 1, namely, El = 1 
and l2  = j - 2 or ll  = j - 2 and l2 = 1. In both cases the result is the same: 

i 2 
U(f1, iZ)'- '  = wJ3wJ1fi12(i-4)* 

When either Zl  = 2 or 12 = 2 the coefficient = 0 because By = 0. In the 
remaining cases the coefficient under consideration turns out to be 

u(Il,12)'-1 i = :3w51612(z1 - 2)612(12 - 2). 
In a similar way for r = 3, it is easy to see that four cases arise. 

(i) All the li are one. In this case we have ~ ( 1 , 1 , 1 ) 3  = 1. 
(ii) Among the three li there are exactly two equal to one. In such a case the 

coefficient is the same for all the different cases: 

aill I 2. 1 3 )I-1 = wJ3w?1ii12(j - 5 ) .  

(iii) Among the three li there is only one equal to one. Therefore, in this case, we 
have 

4 l 1 , i 2 J 3 ) J - 1  = w ;3w$ld12(li -2)dlZ(lr-2), 
where here li and lr  are those different to one. Again in this case (when an Zi = 2) the 
coefficient becomes zero. 

(iv) All the li are different from one. Again if an li  equals two the coefficient is zero. 
Otherwise 

~ ( l 1 , / 2 , / 3 Y - '  = -2)612(12-2)612(13 -2). 
An analogous analysis for greater r may show that similar cases of what we have 

already obtained will appear. Moreover, other terms will appear too. As an example, 
we show for r = 4 that when all li are different from 1 and 2 the coefficient now is 

a(ll / =wJ3w~1612(11-2)612(/2-2)612(13-2)612(/4-2!. 4 
9 21 3, 4 
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From here it is easy to see that we may arrange all the coefficients having only one 
6 1 2  in a sum which is 

where ( t )  is the respective combinatorial number which appears as the number of 
different forms to combine li = 1. Now arranging all the coefficients with two B I Z ,  this 
sum is 

Thus, following this procedure, it is possible to show that the final result is 

j-(l,+l,+ ...+ lp-,+k+2p-3(p-1)+l) 

X c i i l Z ( l 1 -  2 ) f i 1 2 ( l 2  - 2)  . . . 
1,-1=3 

x d l Z { j - ( l 1  + h+. . . +lp--l + k  + 2 p  - 3 ( p  - I))}) 

j-(l,+l,+ ...+ l,_,+k+Zp-3(p-1)+1) 

1,-1=3 
X c a 1 2 ( l 1 - 2 ) d 1 2 ( / 2 - 2 ) .  . , 

x d 12{ j - ( ll  + l2 + . . . + lp - + k + 2 p  - 3 ( p  - 1 I)}) O J , ~  : id12(  i - 2)]  

+ w J 3 w ? i ~ 1 2 ( j - 2 ) ,  

where [XI stands for the largest integer Sx.  
Now, in order to finish our analysis to obtain the explicit solution, either one repeats 

the analysis for H I 2  with the same method using a 2 x 2 matrix or one directly computes 
the values of d 1 2  by diagonalising the submatrix A to obtain 

We choose the last approach. Consider the matrix 

0 wJ1 1 

its characteristic equation is 

- A 3 + a 1 A 2 + a 1 A  + U 3 = O  

where 
2 2  

a 1  = <dj3wj1 and a3 = (wJ3 -a1 ) *  

As usual, for the cubic equation, it can be changed to 

A ~ + ~ A  +q  = O  
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where 

In order to know what type of solutions we have, it is important to study the 
discriminant 

1 2 2  2 3  4 A = p 3 / 2 7 + q 2 / 4 = - a a :  + 2 a a ?  -aa: -4alwJ3 + a w J 3 a l  + 0 J 3 / 4  

where 

(Y = 1 / 2 7 .  

For simplicity we assume wJ3 = wJ1, which implies that the interactions of the first and 
third neighbours are the same. It results that A > 0 for any 0 < w?3 < 0.8. Therefore, we 
are faced with one real root and two complex conjugate eigenvalues 

A 1  = ul+V1, A ~ = u ~ E + v ~ S ,  A3=uiS+vie 

where 

U :  = [ - q / 2  + (4’14 + p 3 / 2 7 ) ’ / ’ ] ,  

E = i ( - l + i J ? ) ,  ~ = $ ( - 1 - i J 3 ) .  

v: = [ - q / 2  - (4’14 + p 3 / 2 7 ) ’ / ’ ]  

and 
- 

Knowing the eigenvalues, it remains to compute the coefficients in ( 5 ) .  It is easy to 
see that these are given by 

A 7 ( A r  - wJ3WJl)’ 

2w~3A 3 ( A r  - w ~ ~ w ~ ~ ) ~  + W?3Ar * 

er = 

With all this we have found out an analytic solution of a 1 ~ ( j )  and, substituting this in 
( 4 ) ,  an analytic solution for the partition function in the thermodynamic limit was 
derived. 

7. Final remarks 

We would like to point out again that the recursive method presented here gives rise to 
an exact solution of the partition function or some of the functions derived from it. 
Moreover the method permits us to work with open chains. The exactness and 
effectiveness of it gives power to the method. 

From a physical point of view the recursive method allows us to solve exactly many 
problems related to Ising models in one dimension. 

Even though the computational approach of the new method of solution introduced 
in this paper is somewhat involved, it represents a good improvement to the possible 
analytic solution for Ising models with more than one neighbour interaction. Further- 
more this general approach might be useful in other problems for computing eigen- 
values for matrices with higher dimension. 
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